Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
PLoS One ; 19(4): e0301367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625908

RESUMO

BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Georgia , SARS-CoV-2 , Vacinação , Imunidade , Casas de Saúde , RNA Mensageiro , Imunoglobulina G , Anticorpos Antivirais
2.
Cereb Cortex ; 29(6): 2575-2587, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29850803

RESUMO

Local gyrification index (LGI), a metric quantifying cortical folding, was evaluated in 105 boys with autism spectrum disorder (ASD) and 49 typically developing (TD) boys at 3 and 5 years-of-age. At 3 years-of-age, boys with ASD had reduced gyrification in the fusiform gyrus compared with TD boys. A longitudinal evaluation from 3 to 5 years revealed that while TD boys had stable/decreasing LGI, boys with ASD had increasing LGI in right inferior temporal gyrus, right inferior frontal gyrus, right inferior parietal lobule, and stable LGI in left lingual gyrus. LGI was also examined in a previously defined neurophenotype of boys with ASD and disproportionate megalencephaly. At 3 years-of-age, this subgroup exhibited increased LGI in right dorsomedial prefrontal cortex, cingulate cortex, and paracentral cortex, and left cingulate cortex and superior frontal gyrus relative to TD boys and increased LGI in right paracentral lobule and parahippocampal gyrus, and left precentral gyrus compared with boys with ASD and normal brain size. In summary, this study identified alterations in the pattern and development of LGI during early childhood in ASD. Distinct patterns of alterations in subgroups of boys with ASD suggests that multiple neurophenotypes exist and boys with ASD and disproportionate megalencephaly should be evaluated separately.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/patologia , Encéfalo/crescimento & desenvolvimento , Pré-Escolar , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos
3.
Lancet Psychiatry ; 5(11): 895-904, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30270033

RESUMO

BACKGROUND: We previously showed, in two separate cohorts, that high-risk infants who were later diagnosed with autism spectrum disorder had abnormally high extra-axial cerebrospinal fluid (CSF) volume from age 6-24 months. The presence of increased extra-axial CSF volume preceded the onset of behavioural symptoms of autism and was predictive of a later diagnosis of autism spectrum disorder. In this study, we aimed to establish whether increased extra-axial CSF volume is found in a large, independent sample of children diagnosed with autism spectrum disorder, whether extra-axial CSF remains abnormally increased beyond infancy, and whether it is present in both normal-risk and high-risk children with autism. METHODS: In this case-control MRI study, children with autism spectrum disorder or with typical development aged 2-4 years were recruited from the community to the UC Davis MIND Institute Autism Phenome Project, based in Sacramento, CA, USA. The autism spectrum disorder group comprised children with autism spectrum disorder who were either normal risk (ie, from simplex families) or high risk (ie, from multiplex families). Measurements of extra-axial CSF volume, brain volume, head circumference, sleep problems, and familial risk status were derived from MRI and behavioural assessments. We applied a previously validated machine learning algorithm based on extra-axial CSF volume, brain volume, age, and sex to the current dataset. FINDINGS: Between July 20, 2007, and Dec 13, 2012, 159 children with autism spectrum disorder (132 male, 27 female) and 77 with typical development (49 male, 28 female) underwent MRI scans. The autism spectrum disorder group had an average of 15·1% more extra-axial CSF than controls after accounting for differences in brain volume, weight, age, and sex (least-squares mean 116·74 cm3 [SE 3·33] in autism group vs 101·40 cm3 [3·93] in typical development group; p=0·007; Cohen's d = 0·39). Subgroups of normal-risk (n=132) and high-risk (n=27) children with autism spectrum disorder had nearly identical extra-axial CSF volumes (p=0·78), and both subgroups had significantly greater volumes than controls. Both extra-axial CSF volume (p=0·004) and brain volume (p<0·0001) uniquely contributed to enlarged head circumference in the autism spectrum disorder group (p=0·04). Increased extra-axial CSF volume was associated with greater sleep disturbances (p=0·03) and lower non-verbal ability (p=0·04). The machine learning algorithm correctly predicted autism spectrum disorder diagnosis with a positive predictive value of 83% (95% CI 76·2-88·3). INTERPRETATION: Increased extra-axial CSF volume is a reliable brain anomaly that has now been found in three independent cohorts, comprising both high-risk and normal-risk children with autism spectrum disorder. Increased extra-axial CSF volume is detectable using conventional structural MRI scans from infancy through to age 3 years. These results suggest that increased extra-axial CSF volume could be an early stratification biomarker of a biologically based subtype of autism that might share a common underlying pathophysiology. FUNDING: US National Institutes of Health.


Assuntos
Transtorno do Espectro Autista/líquido cefalorraquidiano , Transtorno do Espectro Autista/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Encéfalo , Estudos de Casos e Controles , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
4.
Autism ; 22(7): 891-896, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28903580

RESUMO

Past events are often reported as occurring more recently than they actually took place, an error called forward telescoping. This study examined whether forward telescoping was evident in parent reports of autism spectrum disorder symptom emergence and onset classification. Parents were interviewed when their child was 2-3 years old (Time 1) and approximately 6 years old (Time 2). Significant forward telescoping was found in both age of social regression and age when language milestones were achieved, but not age of language regression. The correspondence between Time 1 and Time 2 onset report was low ( kappa = 0.38). Approximately one-quarter of the sample changed onset categories, most often due to parents not recalling a regression at Time 2 that they had reported at Time 1. These results challenge the use of retrospective methods in determining onset patterns.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Rememoração Mental , Pais/psicologia , Idade de Início , Transtorno do Espectro Autista/psicologia , Pré-Escolar , Feminino , Humanos , Entrevistas como Assunto , Masculino , Reprodutibilidade dos Testes
5.
Autism Res ; 10(5): 711-722, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28239961

RESUMO

A consensus has emerged that despite common core features, autism spectrum disorder (ASD) has multiple etiologies and various genetic and biological characteristics. The fact that there are likely to be subtypes of ASD has complicated attempts to develop effective therapies. The UC Davis MIND Institute Autism Phenome Project is a longitudinal, multidisciplinary analysis of children with autism and age-matched typically developing controls; nearly 400 families are participating in this study. The overarching goal is to gather sufficient biological, medical, and behavioral data to allow definition of clinically meaningful subtypes of ASD. One reasonable hypothesis is that different subtypes of autism will demonstrate different patterns of altered brain organization or development i.e., different neurophenotypes. In this Commentary, we discuss one neurophenotype that is defined by megalencephaly, or having brain size that is large and disproportionate to body size. We have found that 15% of the boys with autism demonstrate this neurophenotype, though it is far less common in girls. We review behavioral and medical characteristics of the large-brained group of boys with autism in comparison to those with typically sized brains. While brain size in typically developing individuals is positively correlated with cognitive function, the children with autism and larger brains have more severe disabilities and poorer prognosis. This research indicates that phenotyping in autism, like genotyping, requires a very substantial cohort of subjects. Moreover, since brain and behavior relationships may emerge at different times during development, this effort highlights the need for longitudinal analyses to carry out meaningful phenotyping. Autism Res 2017, 10: 711-722. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Imageamento por Ressonância Magnética , Megalencefalia/diagnóstico por imagem , Megalencefalia/fisiopatologia , Fenótipo , Transtorno do Espectro Autista/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/fisiopatologia , Estudos de Coortes , Feminino , Humanos , Inteligência/fisiologia , Comunicação Interdisciplinar , Colaboração Intersetorial , Estudos Longitudinais , Masculino , Megalencefalia/psicologia , Tamanho do Órgão/fisiologia , Valores de Referência , Estados Unidos
6.
J Am Acad Child Adolesc Psychiatry ; 55(9): 817-24, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27566123

RESUMO

OBJECTIVE: The objective of this study was to determine whether functional connectivity of the amygdala is altered in preschool-age children with autism spectrum disorder (ASD) and to assess the clinical relevance of observed alterations in amygdala connectivity. METHOD: A resting-state functional connectivity magnetic resonance imaging study of the amygdala (and a parallel study of primary visual cortex) was conducted in 72 boys (mean age 3.5 years; n = 43 with ASD; n = 29 age-matched controls). RESULTS: The ASD group showed significantly weaker connectivity between the amygdala and several brain regions involved in social communication and repetitive behaviors, including bilateral medial prefrontal cortex, temporal lobes, and striatum (p < .05, corrected). Weaker connectivity between the amygdala and frontal and temporal lobes was significantly correlated with increased autism severity in the ASD group (p < .05). In a parallel analysis examining the functional connectivity of primary visual cortex, the ASD group showed significantly weaker connectivity between visual cortex and sensorimotor regions (p < .05, corrected). Weaker connectivity between visual cortex and sensorimotor regions was not correlated with core autism symptoms, but instead was correlated with increased sensory hypersensitivity in the visual/auditory domain (p < .05). CONCLUSION: These findings indicate that preschool-age children with ASD have disrupted functional connectivity between the amygdala and regions of the brain important for social communication and language, which might be clinically relevant because weaker connectivity was associated with increased autism severity. Moreover, although amygdala connectivity was associated with behavioral domains that are diagnostic of ASD, altered connectivity of primary visual cortex was related to sensory hypersensitivity.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma , Tonsila do Cerebelo/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Pré-Escolar , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Percepção Social
7.
Autism Res ; 9(11): 1169-1182, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27273931

RESUMO

A recurring finding in autism spectrum disorder research is that head and brain growth is disproportionate to body growth in early childhood. Nordahl et al. (2011) demonstrated that this occurs in approximately 15% of boys with autism. While the literature suggests that brain growth normalizes at older ages, this has never been evaluated in a longitudinal study. The current study evaluated head circumference and total cerebral volume in 129 male children with autism and 49 age-matched, typically developing controls. We determined whether 3-year-old boys with brain size disproportionate to height (which we call disproportionate megalencephaly) demonstrated an abnormal trajectory of head growth from birth and whether they maintained an enlarged brain at 5 years of age. Findings were based on longitudinal, structural MRI data collected around 3, 4, and 5 years of age and head circumference data from medical records. At 3 years of age, 19 boys with autism had enlarged brains while 110 had brain sizes in the normal range. Boys with disproportionate megalencephaly had greater total cerebral, gray matter, and white matter volumes from 3-5 years compared to boys with autism and normal sized brains and typically developing boys, but no differences in body size. While head circumference did not differ between groups at birth, it was significantly greater in the disproportionate megalencephaly group by around 2 years. These data suggest that there is a subgroup of boys with autism who have brains disproportionate to body size and that this continues until at least 5 years of age. Autism Res 2016, 9: 1169-1182. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.


Assuntos
Transtorno do Espectro Autista/complicações , Megalencefalia/complicações , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Pré-Escolar , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino
8.
J Neurodev Disord ; 8: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27158271

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) has been widely used in studies evaluating the neuropathology of autism spectrum disorder (ASD). Studies are often limited, however, to higher functioning individuals with ASD. MRI studies of individuals with ASD and comorbid intellectual disability (ID) are lacking, due in part to the challenges of acquiring images without the use of sedation. METHODS: Utilizing principles of applied behavior analysis (ABA), we developed a protocol for acquiring structural MRI scans in school-aged children with ASD and intellectual impairment. Board certified behavior analysts worked closely with each child and their parent(s), utilizing behavior change techniques such as pairing, shaping, desensitization, and positive reinforcement, through a series of mock scanner visits to prepare the child for the MRI scan. An objective, quantitative assessment of motion artifact in T1- and diffusion-weighted scans was implemented to ensure that high-quality images were acquired. RESULTS: The sample consisted of 17 children with ASD who are participants in the UC Davis Autism Phenome Project, a longitudinal MRI study aimed at evaluating brain developmental trajectories from early to middle childhood. At the time of their initial scan (2-3.5 years), all 17 children had a diagnosis of ASD and development quotient (DQ) <70. At the time of the current scan (9-13 years), 13 participants continued to have IQs in the range of ID (mean IQ = 54.1, sd = 12.1), and four participants had IQs in the normal range (mean = 102.2, sd = 7.5). The success rate in acquiring T1-weighted images that met quality assurance for acceptable motion artifact was 100 %. The success rate for acquiring high-quality diffusion-weighted images was 94 %. CONCLUSIONS: By using principles of ABA in a research MRI setting, it is feasible to acquire high-quality images in school-aged children with ASD and intellectual impairment without the use of sedation. This is especially critical to ensure that ongoing longitudinal studies of brain development can extend from infancy and early childhood into middle childhood in children with ASD at all levels of functioning, including those with comorbid ID.

10.
Mol Autism ; 6: 26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25973163

RESUMO

BACKGROUND: Abnormalities in the corpus callosum have been reported in individuals with autism spectrum disorder (ASD), but few studies have evaluated young children. Sex differences in callosal organization and diffusion characteristics have also not been evaluated fully in ASD. METHODS: Structural and diffusion-weighted images were acquired in 139 preschool-aged children with ASD (112 males/27 females) and 82 typically developing (TD) controls (53 males/29 females). Longitudinal scanning at two additional annual time points was carried out in a subset of these participants. Callosal organization was evaluated using two approaches: 1) diffusion tensor imaging (DTI) tractography to define subregions based on cortical projection zones and 2) as a comparison to previous studies, midsagittal area analysis using Witelson subdivisions. Diffusion measures of callosal fibers were also evaluated. RESULTS: Analyses of cortical projection zone subregions revealed sex differences in the patterns of altered callosal organization. Relative to their sex-specific TD counterparts, both males and females with ASD had smaller regions dedicated to fibers projecting to superior frontal cortex, but patterns differed in callosal subregions projecting to other parts of frontal cortex. While males with ASD had a smaller callosal region dedicated to the orbitofrontal cortex, females with ASD had a smaller callosal region dedicated to the anterior frontal cortex. There were also sex differences in diffusion properties of callosal fibers. While no alterations were observed in males with ASD relative to TD males, mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were all increased in females with ASD relative to TD females. Analyses of Witelson subdivisions revealed a decrease in midsagittal area of the corpus callosum in both males and females with ASD but no regional differences in specific subdivisions. Longitudinal analyses revealed no diagnostic or sex differences in the growth rate or change in diffusion measures of the corpus callosum from 3 to 5 years of age. CONCLUSIONS: There are sex differences in the pattern of altered corpus callosum neuroanatomy in preschool-aged children with ASD.

11.
Nat Genet ; 46(10): 1063-71, 2014 10.
Artigo em Inglês | MEDLINE | ID: mdl-25217958

RESUMO

Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity.


Assuntos
Transtorno Autístico/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença/genética , Sequência de Bases , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Criança , Mapeamento Cromossômico , Proteínas Correpressoras , Hibridização Genômica Comparativa , Proteínas de Ligação a DNA , Feminino , Estudos de Associação Genética , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Masculino , Dados de Sequência Molecular , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
12.
Proc Natl Acad Sci U S A ; 108(50): 20195-200, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22123952

RESUMO

Autism is a heterogeneous disorder with multiple behavioral and biological phenotypes. Accelerated brain growth during early childhood is a well-established biological feature of autism. Onset pattern, i.e., early onset or regressive, is an intensely studied behavioral phenotype of autism. There is currently little known, however, about whether, or how, onset status maps onto the abnormal brain growth. We examined the relationship between total brain volume and onset status in a large sample of 2- to 4-y-old boys and girls with autism spectrum disorder (ASD) [n = 53, no regression (nREG); n = 61, regression (REG)] and a comparison group of age-matched typically developing controls (n = 66). We also examined retrospective head circumference measurements from birth through 18 mo of age. We found that abnormal brain enlargement was most commonly found in boys with regressive autism. Brain size in boys without regression did not differ from controls. Retrospective head circumference measurements indicate that head circumference in boys with regressive autism is normal at birth but diverges from the other groups around 4-6 mo of age. There were no differences in brain size in girls with autism (n = 22, ASD; n = 24, controls). These results suggest that there may be distinct neural phenotypes associated with different onsets of autism. For boys with regressive autism, divergence in brain size occurs well before loss of skills is commonly reported. Thus, rapid head growth may be a risk factor for regressive autism.


Assuntos
Encéfalo/crescimento & desenvolvimento , Transtornos Globais do Desenvolvimento Infantil/patologia , Regressão Psicológica , Encéfalo/patologia , Cefalometria , Cérebro/patologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...